Jahn−Teller Assisted Na Diffusion for High Performance Na Ion Batteries

نویسندگان

  • Xin Li
  • Yan Wang
  • Di Wu
  • Lei Liu
  • Gerbrand Ceder
چکیده

Na energy storage technology is strategically attractive for large scale applications such as grid energy storage. We show in this paper that there is a clear relation between the Jahn−Teller activity of a transition metal ion at the end of charge and the mobility of Na in a cathode material. This is particularly important as mobility at the end of charge limits the capacity of current materials. Hence, by using this classical piece of physics in the battery world, it is possible to create higher capacity Na-cathode materials. Even more exciting is that the ideal element to impart this effect on cathodes is Fe, which is the least expensive of the transition metal oxides and can therefore enable low cost cathode materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Utilizing Co2+/Co3+ Redox Couple in P2‐Layered Na0.66Co0.22Mn0.44Ti0.34O2 Cathode for Sodium‐Ion Batteries

Developing sodium-ion batteries for large-scale energy storage applications is facing big challenges of the lack of high-performance cathode materials. Here, a series of new cathode materials Na0.66Co x Mn0.66-x Ti0.34O2 for sodium-ion batteries are designed and synthesized aiming to reduce transition metal-ion ordering, charge ordering, as well as Na+ and vacancy ordering. An interesting struc...

متن کامل

Electrochemical Performance of Porous Carbon/Tin Composite Anodes for SodiumIon and LithiumIon Batteries

The electrochemical performance of mesoporous carbon (C)/tin (Sn) anodes in Na-ion and Li-ion batteries is systematically investigated. The mesoporous C/Sn anodes in a Na-ion battery shows similar cycling stability but lower capacity and poorer rate capability than that in a Li-ion battery. The desodiation potentials of Sn anodes are approximately 0.21 V lower than delithiation potentials. The ...

متن کامل

Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries.

Carbon-coated olivine NaFePO(4) (C-NaFePO(4)) spherical particles with a uniform diameter of ∼80 nm are obtained by chemical delithiation and subsequent electrochemical sodiation of carbon-coated olivine LiFePO(4) (C-LiFePO(4)), which is synthesized by a solvothermal method. The C-NaFePO(4) electrodes are identical (particle size, particle size distribution, surface coating, and active material...

متن کامل

Experimental visualization of the diffusion pathway of sodium ions in the Na3[Ti2P2O10F] anode for sodium-ion battery

Sodium-ion batteries have attracted considerable interest as an alternative to lithium-ion batteries for electric storage applications because of the low cost and natural abundance of sodium resources. The materials with an open framework are highly desired for Na-ion insertion/extraction. Here we report on the first visualization of the sodium-ion diffusion path in Na3[Ti2P2O10F] through high-...

متن کامل

Na2CoSiO4 as a cathode material for sodium-ion batteries: structure, electrochemistry and diffusion pathways.

The importance of developing new low-cost and safe cathodes for large-scale sodium batteries has led to recent interest in silicate compounds. A novel cobalt orthosilicate, Na2CoSiO4, shows promise as a high voltage (3.3 V vs. Na/Na+) cathode material for sodium-ion batteries. Here, the synthesis and room temperature electrochemical performance of Na2CoSiO4 have been investigated with the compo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016